Login / Signup

Counterclockwise Drilling with Different Tapered Drills Condenses the Implant Bed-An Optical Coherence Tomography In Vitro Study.

Rafael Arcesio Delgado-RuizMina MahdianIlyasse BenezhaGeorgios E Romanos
Published in: Medicina (Kaunas, Lithuania) (2021)
Background and Objectives: To evaluate the condensation and the microarchitecture of implant bed walls of sites prepared with counterclockwise drilling with tapered implant drills using optical coherence tomography. Materials and Methods: Four drill designs with different wall and tip angles were used. Polyurethane laminas resembling type IV bone microarchitecture were superimposed and clamped with a vice to simulate the coronal, middle, and apical aspects of the implant site. Twenty implant beds were prepared at 1200 rpm in clockwise (control) and counterclockwise (test) directions (N = 160). Optical coherence tomography (OCT) was used to evaluate the condensation and microarchitecture characteristics of the implant bed walls. The relative condensation was calculated using the Image J software Bone application. The microarchitecture was evaluated in reconstructed 3D volumes in XY, XZ, and YZ sections. Statistical analysis was performed using one-way ANOVA. Dunnet test was applied to determine differences between groups. Significance was set as p < 0.05. Results: Counterclockwise drilling (Test) condensed and changed the microarchitecture of the apical regions for all the implant beds in all of the groups when compared to clockwise drilling (control). The apical region of test groups showed the highest relative bone condensation (p = 0.026) when compared to controls. Conclusions: The direction of rotation (counterclockwise drilling) and not the design of tapered drills (tip and wall angles) is responsible for the condensation at the apical area observed in polyurethane blocks. The OCT method can be used for the evaluation of changes in density and microstructure of polyurethane blocks.
Keyphrases
  • soft tissue
  • optical coherence tomography
  • diabetic retinopathy
  • bone mineral density
  • deep learning
  • machine learning
  • multiple sclerosis