Login / Signup

Assessment of Compatibility between Various Intraoral Scanners and 3D Printers through an Accuracy Analysis of 3D Printed Models.

Chang-Hee ImJi-Man ParkJang-Hyun KimYou-Jung KangJee-Hwan Kim
Published in: Materials (Basel, Switzerland) (2020)
To assess the accuracy of various intraoral scanners (IOSs) and to investigate the existence of mutual compatibility that affects the accuracy between IOS and 3-dimensional (3D) printing using a scan quadrant model. For clinical implication, crown preparations and cavity design according to prosthetic diagnosis and treatment considerations must be acquired by a digital scanner. The selected typodont model was scanned using a reference scanner, from which reference (Ref) standard tessellation language (STL) data were created. Data obtained by scanning the typodont model with IOSs based on three different technologies were divided into three groups (CS3600, i500, and Trios3). Scanned data from the groups were divided into sub-groups of digital light processing (DLP), fused deposition modeling (FDM), and stereolithography apparatus (SLA), based on which 3D printed models (3DP) were fabricated. The 3DP dental models were scanned to obtain a total of 90 3DP STL datasets. The best-fit algorithm of 3D analysis software was used for teeth and arch measurements, while trueness was analyzed by calculating the average deviation among measured values based on superimposition of Ref and IOS and 3DP data. The differences between Ref and IOS (Ref-IOS), Ref and 3DP (Ref-IOS/3DP), and IOS and 3DP data (IOS-3DP) were compared and analyzed, while accuracy within each of the three main groups was assessed. For statistical analysis, the Kruskal-Wallis, Mann-Whitney U, and repeated measures ANOVA test were used (p < 0.05). The major finding is that the mutual relationships between IOSs and 3D printers vary depending on the combination. However, i500 intraoral scanner and DLP 3D printer was the combination that showed the best trueness value.
Keyphrases