Login / Signup

Decreased cellular excitability of pyramidal tract neurons in primary motor cortex leads to paradoxically increased network activity in simulated parkinsonian motor cortex.

Donald W DohertyLi-Qiang ChenYoland SmithThomas WichmannHong-Yuan ChuWilliam W Lytton
Published in: bioRxiv : the preprint server for biology (2024)
Decreased excitability of pyramidal tract neurons in layer 5B (PT5B) of primary motor cortex (M1) has recently been shown in a dopamine-depleted mouse model of parkinsonism. We hypothesized that decreased PT5B neuron excitability would substantially disrupt oscillatory and non-oscillatory firing patterns of neurons in layer 5 (L5) of primary motor cortex (M1). To test this hypothesis, we performed computer simulations using a previously validated computer model of mouse M1. Inclusion of the experimentally identified parkinsonism-associated decrease of PT5B excitability into our computational model produced a paradoxical increase in rest-state PT5B firing rate, as well as an increase in beta-band oscillatory power in local field potential (LFP). In the movement-state, PT5B population firing and LFP showed reduced beta and increased high-beta, low-gamma activity of 20-35 Hz in the parkinsonian, but not in control condition. The appearance of beta-band oscillations in parkinsonism would be expected to disrupt normal M1 motor output and contribute to motor activity deficits seen in patients with Parkinson's disease (PD).
Keyphrases