Login / Signup

A Proprioceptive Soft Robot Module Based on Supercoiled Polymer Artificial Muscle Strings.

Yang YangHonghui ZhuJia LiuHaojian LuYi RenMichael Yu Wang
Published in: Polymers (2022)
In this paper, a multi-functional soft robot module that can be used to constitute a variety of soft robots is proposed. The body of the soft robot module made of rubber is in the shape of a long strip, with cylindrical chambers at both the top end and bottom end of the module for the function of actuators and sensors. The soft robot module is driven by supercoiled polymer artificial muscle (SCPAM) strings, which are made from conductive nylon sewing threads. Artificial muscle strings are embedded in the chambers of the module to control its deformation. In addition, SCPAM strings are also used for the robot module's sensing based on the linear relationship between the string's length and their resistance. The bending deformation of the robot is measured by the continuous change of the sensor's resistance during the deformation of the module. Prototypes of an inchworm-like crawling robot and a soft robotic gripper are made, whose crawling ability and grasping ability are tested, respectively. We envision that the proposed proprioceptive soft robot module could potentially be used in other robotic applications, such as continuum robotic arm or underwater robot.
Keyphrases
  • skeletal muscle
  • minimally invasive
  • robot assisted
  • tissue engineering