Login / Signup

Wide-Bandwidth Nanocomposite-Sensor Integrated Smart Mask for Tracking Multiphase Respiratory Activities.

Jiao SuoYifan LiuCong WuMeng ChenQingyun HuangYiming LiuKuanming YaoYangbin ChenQiqi PanXiaoyu ChangAlice Yeuk Lan LeungHo-Yin ChanGuanglie ZhangZhengbao YangWalid DaoudXinyue LiVellaisamy A L RoyJiangang ShenXinge YuJianping WangWen Jung Li
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2022)
Wearing masks has been a recommended protective measure due to the risks of coronavirus disease 2019 (COVID-19) even in its coming endemic phase. Therefore, deploying a "smart mask" to monitor human physiological signals is highly beneficial for personal and public health. This work presents a smart mask integrating an ultrathin nanocomposite sponge structure-based soundwave sensor (≈400 µm), which allows the high sensitivity in a wide-bandwidth dynamic pressure range, i.e., capable of detecting various respiratory sounds of breathing, speaking, and coughing. Thirty-one subjects test the smart mask in recording their respiratory activities. Machine/deep learning methods, i.e., support vector machine and convolutional neural networks, are used to recognize these activities, which show average macro-recalls of ≈95% in both individual and generalized models. With rich high-frequency (≈4000 Hz) information recorded, the two-/tri-phase coughs can be mapped while speaking words can be identified, demonstrating that the smart mask can be applicable as a daily wearable Internet of Things (IoT) device for respiratory disease identification, voice interaction tool, etc. in the future. This work bridges the technological gap between ultra-lightweight but high-frequency response sensor material fabrication, signal transduction and processing, and machining/deep learning to demonstrate a wearable device for potential applications in continual health monitoring in daily life.
Keyphrases