Login / Signup

Engineering the Composition and Structure of Bimetallic Au-Cu Alloy Nanoparticles in Carbon Nanofibers: Self-Supported Electrode Materials for Electrocatalytic Water Splitting.

Juan WangHan ZhuDanni YuJiaWei ChenJiaDong ChenMing ZhangLiNa WangMingLiang Du
Published in: ACS applied materials & interfaces (2017)
The bimetallic Au-Cu alloy nanoparticles have been constructed in electrospun carbon nanofibers (Au-Cu/CNFs), employing as high efficient hydrogen evolution reaction (HER) electrode. The morphology, structure, and composition of bimetallic Au-Cu alloy can be controlled by adjusting the precursor nanofibers through a facile approach. With the increased Cu content, the Au-Cu alloy have a transition from the homogeneous AuCu3 alloy phase to the Au3Cu phase with Cu shell. The self-supported bimetallic Au-Cu/CNFs hybrid can be directly employed as electrode materials for water splitting, and it showed excellent electrochemical activity, including long-term stability, high exchange current density, and low overpotential. The outstanding HER performance could be mainly attributed to the synergistic interactions and interfacial effects of Au-Cu alloy with high densities of uncoordinated surface atoms. In addition, the fast charge transport and the fast kinetic for the desorption of the gas were originated from the self-supported three-dimensional architectures consist of integrated Au-Cu/CNFs networks. The Au-Cu/CNFs with mass ratio of 1:2 (Au3Cu-Cu "core-shell" alloy) obtain the lowest overpotential of 83 mV (at j = 10 mA cm-2), lowest Tafel slope of 70 mV dec-1, and highest exchange current density of 0.790 mA cm-2. The present investigations offer a new strategy for the design and synthesis of unique nanocrystals in energy conversion related application.
Keyphrases
  • metal organic framework
  • sensitive detection
  • reduced graphene oxide
  • aqueous solution
  • gold nanoparticles
  • mass spectrometry
  • visible light
  • drug delivery
  • drug induced
  • ionic liquid