Login / Signup

Pyglotaran: a lego-like Python framework for global and target analysis of time-resolved spectra.

Ivo H M van StokkumJörn WeißenbornSebastian WeigandJoris J Snellenburg
Published in: Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology (2023)
The dynamics of molecular systems can be studied with time-resolved spectroscopy combined with model-based analysis. A Python framework for global and target analysis of time-resolved spectra is introduced with the help of three case studies. The first study, concerning broadband absorption of intersystem crossing in 4-thiothymidine, demonstrates the framework's ability to resolve vibrational wavepackets with a time resolution of ≈10 fs using damped oscillations and their associated spectra and phases. Thereby, a parametric description of the "coherent artifact" is crucial. The second study addresses multichromophoric systems composed of two perylene bisimide chromophores. Here, pyglotaran's guidance spectra and lego-like model composition enable the integration of spectral and kinetic properties of the parent chromophores, revealing a loss process, the undesired production of a radical pair, that reduces the light harvesting efficiency. In the third, time-resolved emission case study of whole photosynthetic cells, a megacomplex containing ≈500 chromophores of five different types is described by a combination of the kinetic models for its elements. As direct fitting of the data by theoretical simulation is unfeasible, our global and target analysis methodology provides a useful 'middle ground' where the theoretical description and the fit of the experimental data can meet. The pyglotaran framework enables the lego-like creation of kinetic models through its modular design and seamless integration with the rich Python ecosystem, particularly Jupyter notebooks. With extensive documentation and a robust validation framework, pyglotaran ensures accessibility and reliability for researchers, serving as an invaluable tool for understanding complex molecular systems.
Keyphrases