Login / Signup

Strongly localized magnetic reconnection by the super-Alfvénic shear flow.

Yi-Hsin LiuM HesseF GuoH LiT K M Nakamura
Published in: Physics of plasmas (2018)
We demonstrate that the dragging of the magnetic field by the super-Alfvénic shear flows out of the reconnection plane can strongly localize the reconnection x-line in collisionless pair plasmas, reversing the current direction at the x-line. Reconnection with this new morphology, which is impossible in resistive-magnetohydrodynamics, is enabled by the particle inertia. Surprisingly, the quasi-steady reconnection rate remains of order 0.1 even though the aspect ratio of the local x-line geometry is larger than unity, which completely excludes the role of tearing physics. We explain this by examining the transport of the reconnected magnetic flux and the opening angle ma de by the upstream magnetic field, concluding that the reconnection rate is still limited by the constraint imposed at the inflow region. Based on these findings, we propose that this often observed fast rate value of order 0.1 itself, in general, is an upper bound value determined by the upstream constraint, independent of the localization mechanism and dissipation therein.
Keyphrases
  • solid state