Calf Birth Weight Predicted Remotely Using Automated in-Paddock Weighing Technology.
Anita Z ChangJosé A ImazLuciano A GonzálezPublished in: Animals : an open access journal from MDPI (2021)
The present study aimed to develop predictive models of calf birth weight (CBW) from liveweight (LW) data collected remotely and individually using an automated in-paddock walk-over-weighing scale (WOW). Twenty-eight multiparous Charolais cows were mated with two Brahman bulls. The WOW was installed at the only watering point to capture LW over five months. Calf birth date and weight were manually recorded, and the liveweight change experienced by a dam at calving (ΔLWC) was calculated as pre-LW minus post-LW calving. Cow non-foetal weight loss at calving (NFW) was calculated as ΔLWC minus CBW. Pearson's correlational analysis and simple linear regressions were used to identify associations between all variables measured. No correlations were found between ΔLWC and pre-LW (p = 0.52), or post-LW (p = 0.14). However, positive associations were observed between ΔLWC and CBW (p < 0.001, R2 = 0.56) and NFW (p < 0.001, R2 = 0.90). Thus, the results suggest that 56% of the variation in ΔLWC is attributed to the calf weight, and consequently could be used as an indicator of CBW. Remote, in-paddock weighing systems have the potential to provide timely and accurate LW data of breeding cows to improve calving management and productivity.
Keyphrases