Recently, luminogens with the aggregation-induced emission characteristic (AIEgens) have received much attention in the field of bioimaging and therapeutic applications. However, the development of AIEgens that are derived from the simple core skeleton with emission color tuning for imaging and therapy is still a formidable challenge. To address this constraint, we present a series of cationic AIEgens based on cyanopyridinium salts (CP1-CP5). The AIEgens can be facilely prepared by varying the aromatic electron donor while fixing the cyanopyridinium group as the electron acceptor within a single benzene ring. The obtained AIEgens possess wide color tunability, large Stokes shifts, and bright emission in the condensed state. Due to their good biocompatibility and cationic nature, these AIEgens can be utilized for multiple-color imaging of intracellular mitochondria as well as Gram-negative and Gram-positive bacteria. Importantly, these AIEgens exhibit remarkable structure-dependent singlet-oxygen generation ability under white light illumination (25 mW cm-2), and CP4 was optimized to serve as an excellent photosensitizer for photodynamic anticancer and antibacterial therapy.
Keyphrases
- gram negative
- high resolution
- multidrug resistant
- oxidative stress
- photodynamic therapy
- reactive oxygen species
- fluorescent probe
- working memory
- cell death
- stem cells
- silver nanoparticles
- bone marrow
- solar cells
- quantum dots
- ionic liquid
- mesenchymal stem cells
- smoking cessation
- energy transfer
- endoplasmic reticulum
- living cells