Login / Signup

Involvement of glutamine synthetase 2 (GS2) amplification and overexpression in Amaranthus palmeri resistance to glufosinate.

Matheus M NogueraAimone PorriIsabel S WerleJames HeiserFrank BrändleJens LerchlBrent MurphyMichael BetzFanny GatzmannMartin PenkertClara TuerkLucie MeyerNilda Roma-Burgos
Published in: Planta (2022)
). One population, MO#2 (fourfold resistant) and its progeny (sixfold resistant), were used to study the resistance mechanism, focusing on the herbicide target glutamine synthetase (GS). We identified four GS genes in A. palmeri; three were transcribed: one coding for the plastidic protein (GS2) and two coding for cytoplasmic isoforms (GS1.1 and GS1.2). These isoforms did not contain mutations associated with resistance. The 17 glufosinate survivors studied showed up to 21-fold increase in GS2 copies. GS2 was expressed up to 190-fold among glufosinate survivors. GS1.1 was overexpressed > twofold in only 3 of 17, and GS1.2 in 2 of 17 survivors. GS inhibition by GFA causes ammonia accumulation in susceptible plants. Ammonia level was analyzed in 12 F1 plants. GS2 expression was negatively correlated with ammonia level (r =  - 0.712); therefore, plants with higher GS2 expression are less sensitive to GFA. The operating efficiency of photosystem II (ϕPSII) of Nicotiana benthamiana overexpressing GS2 was four times less inhibited by GFA compared to control plants. Therefore, increased copy and overexpression of GS2 confer resistance to GFA in A. palmeri (or other plants). We present novel understanding of the role of GS2 in resistance evolution to glufosinate.
Keyphrases
  • young adults
  • room temperature
  • binding protein
  • amino acid