Star Architecture Promoting Morphological Transitions during Polymerization-Induced Self-Assembly.
Xiao WangC Adrian FiggXiaoqing LvYongqi YangBrent S SumerlinZesheng AnPublished in: ACS macro letters (2017)
Polymerization-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization is an effective method to produce block copolymer nano-objects of various morphologies at high solids. However, current PISA formulations have been limited to linear block copolymers. We report the synthesis of AB 2 star block copolymers via RAFT aqueous dispersion polymerization of diacetone acrylamide using a poly(ethylene glycol) methyl ether bearing two chain transfer agents as the difunctional macromolecular chain transfer agent (macro-CTA), which was efficiently synthesized using 2,4,6-trichloro-1,3,5-triazine and activated esters to afford a high end functionality (97%). The star polymer architecture can significantly promote morphological transitions to obtain higher-order morphologies at both lower solids and lower degrees of polymerization of the core-forming block in comparison with its linear counterpart. This work demonstrates that polymer architecture is another important parameter that should be considered when conducting PISA synthesis to obtain complex morphologies.