Login / Signup

Highly Efficient Organic Room-Temperature Phosphorescent Luminophores through Tuning Triplet States and Spin-Orbit Coupling with Incorporation of a Secondary Group.

Bowen LiYanbin GongLu WangHang LinQianqian LiFengyun GuoQianqian LiQian PengZhigang ShuaiLiancheng ZhaoYong Zhang
Published in: The journal of physical chemistry letters (2019)
Achieving efficient ultralong purely organic phosphorescent luminophores is still a big challenge due to the slow intersystem crossing (ISC) process. Herein, we present a facile molecular design strategy that incorporates a secondary group (Br atom or methoxy group) into o-BrCz that can significantly enhance the ISC rate constant (kISC) and achieve high phosphorescence quantum yields (ΦP). As a result, DBrCz and MeBrCz achieved a profound increase of kISC ≈ 108 s-1 and obtained excellent ΦP values up to 24.53 and 27.81% in solid powder, respectively. Given the highly efficient ΦP and proper τp, DBrCz and MeBrCz are applied to alternating current (AC) light-emitting diodes (LEDs), achieving a white LED with CIE coordinates (0.28, 0.29) and a CRI over 90. As a proof of concept, we demonstrate its compensation effect on the dark duration of AC-LED with a reduced percent flicker of 78%. This result extends a new potential application for RTP luminophores in the lighting field.
Keyphrases
  • highly efficient
  • room temperature
  • light emitting
  • ionic liquid
  • molecular dynamics
  • energy transfer
  • climate change
  • gold nanoparticles
  • quantum dots
  • water soluble
  • risk assessment
  • artificial intelligence
  • human health