Login / Signup

Contextual Patch-NetVLAD: Context-Aware Patch Feature Descriptor and Patch Matching Mechanism for Visual Place Recognition.

Wenyuan SunWentang ChenRunxiang HuangJing Tian
Published in: Sensors (Basel, Switzerland) (2024)
The goal of visual place recognition (VPR) is to determine the location of a query image by identifying its place in a collection of image databases. Visual sensor technologies are crucial for visual place recognition as they allow for precise identification and location of query images within a database. Global descriptor-based VPR methods face the challenge of accurately capturing the local specific regions within a scene; consequently, it leads to an increasing probability of confusion during localization in such scenarios. To tackle feature extraction and feature matching challenges in VPR, we propose a modified patch-NetVLAD strategy that includes two new modules: a context-aware patch descriptor and a context-aware patch matching mechanism. Firstly, we propose a context-driven patch feature descriptor to overcome the limitations of global and local descriptors in visual place recognition. This descriptor aggregates features from each patch's surrounding neighborhood. Secondly, we introduce a context-driven feature matching mechanism that utilizes cluster and saliency context-driven weighting rules to assign higher weights to patches that are less similar to densely populated or locally similar regions for improved localization performance. We further incorporate both of these modules into the patch-NetVLAD framework, resulting in a new approach called contextual patch-NetVLAD . Experimental results are provided to show that our proposed approach outperforms other state-of-the-art methods to achieve a Recall@10 score of 99.82 on Pittsburgh30k, 99.82 on FMDataset, and 97.68 on our benchmark dataset.
Keyphrases
  • deep learning
  • machine learning
  • convolutional neural network
  • artificial intelligence
  • optical coherence tomography
  • big data
  • adverse drug