Login / Signup

Two-dimensional heterotriangulene-based manganese organic frameworks: bipolar magnetic and half semiconductors with perpendicular magnetocrystalline anisotropy.

Yue WangJiawei JiangWenbo Mi
Published in: Nanoscale (2022)
Two-dimensional (2D) organic intrinsic magnetic semiconductors have potential applications in low-dimensional organic spintronic devices due to their remarkable physical properties. However, 2D metal-organic frameworks with magnetic and semiconducting properties are rare. In this work, the electronic and magnetic properties of 2D heterotriangulene-based manganese organic frameworks including triphenylamine (TPA) and triphenylborane (TPB) organic ligands with methylene (M), carbonyl (C) or oxygen (O) coordination groups were studied by first-principles calculations. XTPA-Mn (X = M and O) is a bipolar magnetic semiconductor with a large spin-flip band gap. CTPA-Mn and XTPB-Mn (X = M, C and O) are half semiconductors with perpendicular magnetocrystalline anisotropy. The electronic properties of materials ranging from half semiconductors to bipolar magnetic semiconductors appear in CTPA-Mn and XTPB-Mn (X = M and C) at biaxial strains. XTPA-Mn and XTPB-Mn with a frustrated antiferromagnetic configuration are semiconductors with good ductility and stability. These results enrich the diversity of 2D organic intrinsic magnetic semiconductors, which have potential applications in spintronic devices.
Keyphrases