Targeted alpha therapy (TAT) is a promising form of oncology treatment utilising alpha-emitting radionuclides that can specifically accumulate at disease sites. The high energy and high linear energy transfer associated with alpha emissions causes localised damage at target sites whilst minimising that to surrounding healthy tissue. The lack of appropriate radionuclides has inhibited research in TAT. The identification of appropriate radionuclides should be primarily a function of the radionuclide's nuclear decay properties, and not their biochemistry or economic factors since these last two factors can change; however, the nuclear decay properties are fixed to that nuclide. This study has defined and applied a criterion based on nuclear decay properties useful for TAT. This down-selection exercise concluded that the most appropriate radionuclides are: 149 Tb, 211 At/ 211 Po, 212 Pb/ 212 Bi/ 212 Po, 213 Bi/ 213 Po, 224 Ra, 225 Ra/ 225 Ac/ 221 Fr, 226 Ac/ 226 Th, 227 Th/ 223 Ra/ 219 Rn, 229 U, 230 U/ 226 Th, and 253 Fm, the majority of which have previously been considered for TAT. 229 U and 253 Fm have been newly identified and could become new radionuclides of interest for TAT, depending on their decay chain progeny.