Reducing Defects in Halide Perovskite Nanocrystals for Light-Emitting Applications.
Xiaopeng ZhengYi HouHong-Tao SunOmar F MohammedEdward H SargentOsman M BakrPublished in: The journal of physical chemistry letters (2019)
The large specific surface area of perovskite nanocrystals (NCs) increases the likelihood of surface defects compared to that of bulk single crystals and polycrystalline thin films. It is thus crucial to comprehend and control their defect population in order to exploit the potential of perovskite NCs. This Perspective describes and classifies recent advances in understanding defect chemistry and avenues toward defect density reduction in perovskite NCs, and it does so in the context of the promise perceived in light-emitting devices. Several pathways for decreasing the defect density are explored, including advanced NC syntheses, new surface-capping strategies, doping with metal ions and rare earths, engineering elemental compensation, and the translation of core-shell heterostructures into the perovskite materials family. We close with challenges that remain in perovskite NC defect research.