Incomplete reproductive barriers and genomic differentiation impact the spread of resistance mutations between green- and red-colour morphs of a cosmopolitan mite pest.
Wen-Xin XueJing-Tao SunJohan WittersMarilou VandenholeWannes DermauwSabina A BajdaEba A SimmaNicky WybouwErnesto Villacis-PerezThomas Van LeeuwenPublished in: Molecular ecology (2023)
Pesticide resistance represents a clear and trackable case of adaptive evolution with a strong societal impact. Understanding the factors associated with the evolution and spread of resistance is imperative to develop sustainable crop management strategies. The two-spotted spider mite Tetranychus urticae, a major crop pest with worldwide distribution and a polyphagous lifestyle, has evolved resistance to most classes of pesticides. Tetranychus urticae exists as either a green- or a red-coloured morph. However, the extent of genetic divergence and reproductive compatibility vary across populations of these colour morphs, complicating their taxonomic resolution at the species level. Here, we studied patterns of genetic differentiation and barriers to gene flow within and between morphs of T. urticae in order to understand the factors that influence the spread of resistance mutations across its populations. We derived multiple iso-female lines from Tetranychus populations collected from agricultural crops. We generated genomic and morphological data, characterized their bacterial communities and performed controlled crosses. Despite morphological similarities, we found large genomic differentiation between the morphs. This pattern was reflected in the incomplete, but strong postzygotic incompatibility in crosses between colour morphs, while crosses within morphs from different geographical locations were largely compatible. In addition, our results suggest recent/on-going gene flow between green-coloured T. urticae and T. turkestani. By screening the sequences of 10 resistance genes, we found evidence for multiple independent origins and for single evolutionary origins of target-site resistance mutations. Our results indicate that target-site mutations mostly evolve independently in populations on different geographical locations, and that these mutations can spread due to incomplete barriers to gene flow within and between populations.