Randomness in appendage coordination facilitates strenuous ground self-righting.
Qihan XuanChen LiPublished in: Bioinspiration & biomimetics (2020)
Randomness is common in biological and artificial systems, resulting either from stochasticity of the environment or noise in organisms or devices themselves. In locomotor control, randomness is typically considered a nuisance. For example, during dynamic walking, randomness in stochastic terrain leads to metastable dynamics, which must be mitigated to stabilize the system around limit cycles. Here, we studied whether randomness in motion is beneficial for strenuous locomotor tasks. Our study used robotic simulation modeling of strenuous, leg-assisted, winged ground self-righting observed in cockroaches, in which unusually large randomness in wing and leg motions is present. We developed a simplified simulation robot capable of generating similar self-righting behavior and varied the randomness level in wing-leg coordination. During each wing opening attempt, the more randomness added to the time delay between wing opening and leg swinging, the more likely it was for the naive robot (which did not know what coordination is best) to self-right within a finite time. Wing-leg coordination, measured by the phase between wing and leg oscillations, had a crucial impact on self-righting outcome. Without randomness, periodic wing and leg oscillations often limited the system to visit a few bad phases, leading to failure to escape from the metastable state. With randomness, the system explored phases thoroughly and had a better chance of encountering good phases to self-right. Our study complements previous work by demonstrating that randomness helps destabilize locomotor systems from being trapped in undesired metastable states, a situation common in strenuous locomotion.