Login / Signup

Protonation Studies of Molybdenum(VI) Nitride Complexes That Contain the [2,6-(ArNCH2)2NC5H3]2- Ligand (Ar = 2,6-Diisopropylphenyl).

Anne K HickeyLasantha A WickramasingheRichard R SchrockCharlene TsayPeter Müller
Published in: Inorganic chemistry (2019)
[Ar2N3]Mo(N)(O- t-Bu) (1), which contains the conformationally rigid pyridine-based diamido ligand [2,6-(ArNCH2)2NC5H3]2- (Ar = 2,6-diisopropylphenyl), is a catalyst for the reduction of dinitrogen with protons and electrons. Various acids have been added in order to explore where and how the first proton adds to the complex. The addition of adamantol to 1 produces a five-coordinate bis(adamantoxide), [HAr2N3]Mo(N)(OAd)2 (2a), in which one of the amido nitrogens in the ligand has been protonated and the resulting aniline nitrogen in the [HAr2N3]- ligand is not bound to the metal. The addition of [Ph2NH2][OTf] to 1 produces {[HAr2N3]Mo(N)(O- t-Bu)}(OTf) (3), in which an amido nitrogen has been protonated, but the aniline in the [HAr2N3]- ligand remains bound to the metal. Last, the addition of (2,6-lutidinium)BArF4 (BArF4 = {B(3,5-(CF3)2C6H3)4}-) to 1 yields {[Ar2N3]Mo(N)(LutH)(O- t-Bu)}BArF4, in which LutH+ is hydrogen-bonded to the nitride in the solid state and in dichloromethane with Keq = 412 ± 94 and Δ G = -3.6 ± 0.8 kcal at 22 °C. A similar hydrogen-bonded adduct was formed through the addition of (2-methylpyridinium)BArF4 to 1, but the addition of (pyridinium)BArF4 to 1 leads to the formation of (inter alia) {[HAr2N3]Mo(N)(O- t-Bu)}(BArF4), in which the amide nitrogen has been protonated. The addition of cobaltocene to 3 or {[Ar2N3]Mo(N)(LutH)(O- t-Bu)}(BArF4) leads only to the re-formation of 1. X-ray structural studies were carried out on 2a, 3, and {[Ar2N3]Mo(N)(LutH)(O- t-Bu)}(BArF4).
Keyphrases
  • solid state
  • visible light
  • quantum dots
  • room temperature
  • reduced graphene oxide
  • case control
  • carbon dioxide