Synthesis of novel hydrazide Schiff bases with anti-diabetic and anti-hyperlipidemic effects: in-vitro , in-vivo and in-silico approaches.
Waseem Ul IslamAbad KhanFaizullah KhanSaeed UllahMuhammad WaqasHammad KhanMomin KhanShaikh Mizanoor RahmanShaukat AliAbdul MateenAsaad KhalidAjmal KhanAhmed Al HarrasiPublished in: Journal of biomolecular structure & dynamics (2024)
The increasing global incidence of non-insulin-dependent diabetes mellitus (NIDDM) necessitates innovative therapeutic solutions. This study focuses on the design, synthesis and biological evaluation of Schiff base derivatives from 2-bromo-2-(2-chlorophenyl) acetic acid, particularly hydrazone compounds 4a and 4b . Both in-vitro and in-vivo assays demonstrate these derivatives' strong antidiabetic and anti-hyperlipidemic properties. In a 15-d experiment, we administered 4a and 4b at doses of 2.5 and 5 mg/kg body weight, which effectively improved symptoms of alloxan-induced diabetes in mice. These symptoms included weight loss, increased water consumption and high blood glucose levels. The compounds also normalized abnormal levels of total cholesterol (TC), triacylglycerol (TG) and low-density lipoprotein cholesterol (LDL-C), while raising the levels of high-density lipoprotein cholesterol (HDLC). Computational analysis showed that these compounds effectively inhibited the α-glucosidase enzyme by interacting with key catalytic residues, specifically Asp214 and Asp349. These computational results were confirmed through in-vitro tests, where 4a and 4b showed strong α-glucosidase inhibitory activity, with IC 50 values of 0.70 ± 0.11 and 10.29 ± 0.30 µM, respectively. These compounds were more effective than the standard drug, acarbose, which had an IC 50 value of 873.34 ± 1.67 µM. Mechanistic studies further indicated competitive inhibition, reinforcing the therapeutic potential of 4a and 4b for NIDDM treatment.Communicated by Ramaswamy H. Sarma.
Keyphrases
- glycemic control
- blood glucose
- type diabetes
- body weight
- weight loss
- molecular docking
- cardiovascular disease
- bariatric surgery
- risk factors
- low density lipoprotein
- drug induced
- high glucose
- high throughput
- roux en y gastric bypass
- adipose tissue
- diabetic rats
- insulin resistance
- gastric bypass
- endothelial cells
- physical activity
- high fat diet induced
- replacement therapy
- adverse drug
- case control