A critical role for altered red cell cation permeability in pathogenesis of sickle cell disease and other haemolytic anaemias.
John S GibsonGordon W StewartPublished in: British journal of haematology (2023)
The aetiology of sickle cell disease is well known, but pathogenesis is complicated and details remain uncertain. A thorough understanding may suggest novel ways for designing more effective therapies. One area of importance, covered here in Nader et al., is the altered cation permeability of sickle cells and how the co-ordinated operation of a number of membrane transport proteins contributes to disease progression, all driven by the initial event of HbS polymerisation. There are echoes here of the cation leaks of hereditary stomatocytosis. Nader et al. propose a central role for PIEZO1, a novel mechanosensitive channel found in red cells, which may be aberrantly activated in sickle cells following HbS polymerisation and which may have potential as a novel target for future chemotherapies. Commentary on: Nader et al. Piezo1 activation augments sickling propensity and the adhesive properties of sickle red blood cells in a calcium-dependent manner. Br J Haematol 2022 (Online ahead of print). doi: 10.1111/bjh.18799.