Effects of the mTOR inhibitor rapamycin were characterized on in vitro cultured primary human acute myeloid leukemia (AML) cells and five AML cell lines. Constitutive mTOR activation seemed to be a general characteristic of primary AML cells. Increased cellular stress induced by serum deprivation increased both mTOR signaling, lysosomal acidity, and in vitro apoptosis, where lysosomal acidity/apoptosis were independent of increased mTOR signaling. Rapamycin had antiproliferative and proapoptotic effects only for a subset of patients. Proapoptotic effect was detected for AML cell lines only in the presence of serum. Combination of rapamycin with valproic acid, all-trans retinoic acid (ATRA), and NF-κB inhibitors showed no interference with constitutive mTOR activation and mTOR inhibitory effect of rapamycin and no additional proapoptotic effect compared to rapamycin alone. In contrast, dual inhibition of the PI3K-Akt-mTOR pathway by rapamycin plus a PI3K inhibitor induced new functional effects that did not simply reflect a summary of single drug effects. To conclude, (i) pharmacological characterization of PI3K-Akt-mTOR inhibitors requires carefully standardized experimental models, (ii) rapamycin effects differ between patients, and (iii) combined targeting of different steps in this pathway should be further investigated whereas combination of rapamycin with valproic acid, ATRA, or NF-κB inhibitors seems less promising.
Keyphrases
- acute myeloid leukemia
- cell cycle arrest
- induced apoptosis
- endothelial cells
- end stage renal disease
- oxidative stress
- cell proliferation
- allogeneic hematopoietic stem cell transplantation
- signaling pathway
- endoplasmic reticulum stress
- ejection fraction
- cell death
- newly diagnosed
- chronic kidney disease
- prognostic factors
- acute lymphoblastic leukemia
- lps induced
- high resolution
- stress induced
- cancer therapy
- climate change
- nuclear factor
- human health
- toll like receptor
- electronic health record
- adverse drug
- atomic force microscopy
- patient reported
- life cycle