Login / Signup

Coordination of 1-methyl-1,3-dihydro-2H-benzimidazole-2-selone to zinc and cadmium: Monotonic and non-monotonic bond length variations for [H(sebenzimMe)]2MCl2 complexes (M = Zn, Cd, Hg).

Patrick J QuinlivanMahnaz Rostami ChaijanJoshua H PalmerDaniel G ShlianGerard Parkin
Published in: Polyhedron (2019)
The reactions of 1-methyl-1,3-dihydro-2H-benzimidazole-2-selone, H(sebenzimMe), towards the zinc and cadmium halides, MX2 (M = Zn, Cd; X = Cl, Br, I), afford the adducts, [H(sebenzimMe)]2MX2, which have been structurally characterized by X-ray diffraction. The halide ligands of each of these complexes participate in hydrogen bonding interactions with the imidazole N-H moieties, although the nature of the interactions depends on the halide. Specifically, the chloride and bromide derivatives, [H(sebenzimMe)]2ZnX2 and [H(sebenzimMe)]2CdX2 (X = Cl, Br), exhibit two intramolecular N-H•••X interactions, whereas the iodide derivatives, [H(sebenzimMe)]2ZnI2 and [H(sebenzimMe)]2CdI2, exhibit only one intramolecular N-H•••I interaction. Comparison of the M-Se and M-Cl bond lengths of the chloride series, [H(sebenzimMe)]2MCl2 (M = Zn, Cd, Hg), indicates that while the average M-Cl bond lengths progressively increase as the metal becomes heavier, the variation in M-Se bond length exhibits a non-monotonic trend, with the Cd-Se bond being the longest. These different trends provide an interesting subtlety concerned with use of covalent radii in predicting bond length differences. In addition to tetrahedral [H(sebenzimMe)]2CdCl2, [H(sebenzimMe)]3,CdCl2•[H(sebenzim)Me]4CdCl2, which features both five-coordinate and six-coordinate coordinate centers, has also been structurally characterized. Finally, the reaction between CdI2 and H(sebenzimMe) at elevated temperatures affords the 1-methylbenzimidazole complex, [H(sebenzimMe)]-[H(benzimMe)]CdI2, a transformation that is associated with cleavage of the C-Se bond.
Keyphrases
  • heavy metals
  • transition metal
  • nk cells
  • molecular docking
  • electron transfer
  • computed tomography
  • magnetic resonance
  • risk assessment
  • fluorescent probe
  • quantum dots
  • solar cells