Login / Signup

Regulation of the Ocular Cell/Tissue Response by Implantable Biomaterials and Drug Delivery Systems.

Francesco BainoSaeid Kargozar
Published in: Bioengineering (Basel, Switzerland) (2020)
Therapeutic advancements in the treatment of various ocular diseases is often linked to the development of efficient drug delivery systems (DDSs), which would allow a sustained release while maintaining therapeutic drug levels in the target tissues. In this way, ocular tissue/cell response can be properly modulated and designed in order to produce a therapeutic effect. An ideal ocular DDS should encapsulate and release the appropriate drug concentration to the target tissue (therapeutic but non-toxic level) while preserving drug functionality. Furthermore, a constant release is usually preferred, keeping the initial burst to a minimum. Different materials are used, modified, and combined in order to achieve a sustained drug release in both the anterior and posterior segments of the eye. After giving a picture of the different strategies adopted for ocular drug release, this review article provides an overview of the biomaterials that are used as drug carriers in the eye, including micro- and nanospheres, liposomes, hydrogels, and multi-material implants; the advantages and limitations of these DDSs are discussed in reference to the major ocular applications.
Keyphrases
  • drug release
  • drug delivery
  • optic nerve
  • single cell
  • cell therapy
  • emergency department
  • adverse drug
  • tissue engineering
  • stem cells
  • bone marrow
  • optical coherence tomography
  • high frequency
  • smoking cessation