Biofilm Bridges Forming Structural Networks on Patterned Lubricant-Infused Surfaces.
Wenxi LeiJulia BruchmannJan Lars RüpingPavel A LevkinThomas SchwartzPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2019)
Despite many decades of research, biofilm architecture and spreading mechanisms are still not clear because of the heterogenous 3D structure within biofilms. Here, patterned "slippery" lubricant-infused porous surfaces are utilized to study biofilm structure of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Staphylococcus aureus. It is found that bacteria are able to spread over bacteria-repellent lubricant-infused regions by using a mechanism, termed "biofilm bridges". Here, it is demonstrated that bacteria use bridges to form interconnected networks between distant biofilm colonies. Detailed structure of bridges shows a spatial distribution of bacteria with an accumulation of respiratory active bacteria and biomass in the bridges. The core-shell structure of bridges formed by two-species mixed population is illustrated. It is demonstrated that eDNA and nutrients have a strong effect on biofilm bridges formation. Thus, it is believed that biofilm bridging is important to reveal the structure and communication within biofilms.