Login / Signup

Synthesis of SrF 2 :Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH 4 F.

Yu A ErmakovaD V PominovaV V VoronovA D YapryntsevVladimir K IvanovN Yu TabachkovaPavel FedorovSergei Kuznetsov
Published in: Dalton transactions (Cambridge, England : 2003) (2022)
The major challenge in optical ceramic technology is the quality of the starting precursor powder for pressing, which is a key element in the optical ceramic industry. One express and helpful technique for the estimation of powder quality is the estimation of the quantum yield of up-conversion luminescence; therefore precursor powders must exhibit high values of up-conversion luminescence efficiency. Single-phase solid solutions based on strontium fluoride doped with ytterbium and erbium were synthesised by co-precipitation from aqueous solutions using sodium fluoride, potassium fluoride and ammonium fluoride as fluorinating agents. The asymmetry of X-ray diffraction maxima indicated the presence of two populations of particles with the same chemical composition. The processes of extended flat particles' growth from smaller particles with a spherical morphology were revealed with transmission electron microscopy and X-ray diffraction. It was shown that when sodium fluoride and potassium fluoride were used they entered the crystal structure in an amount of 3-4 mol% and 1 mol%, respectively. The introduction of sodium and potassium led to an improvement in the sintering ability of particles and a significant increase in the particle size in ceramics by a factor of 5 and 2, respectively, in comparison with the use of ammonium fluoride. The quantum yield values of up-conversion luminescence at the level of tenths of a percent at a low pump power density of 0.1 W cm -2 were very high, which suggests that these synthetic techniques can be considered to be promising for the preparation of precursors of laser ceramics.
Keyphrases
  • drinking water
  • electron microscopy
  • crystal structure
  • energy transfer
  • quantum dots
  • high resolution
  • molecular dynamics
  • magnetic resonance
  • quality improvement
  • single cell
  • room temperature
  • breast cancer cells