Poly (Vinyl Alcohol)/Agar Hydrogel Electrolytes Based Flexible All-in-One Supercapacitors with Conducting Polyaniline/Polypyrrole Electrodes.
Khadija HasanShahid BashirRamesh SubramaniamRamesh KasiKashif KamranJaved IqbalHamed AlgarniAbdullah Godran Al-SehemiWageh SwelmM PershaanaaFathiah KamarulazamPublished in: Polymers (2022)
The major components of supercapacitor are electrodes and electrolytes which are fabricated using various materials and methods. Hydrogel is one such material that is used in supercapacitors as electrodes and electrolytes or both. Hydrogels are usually described as a soft and porous network of polymer materials that can swell in water because of the hydrophilic nature of its polymer chains, compriseng a 3D structure. It is well known that supercapacitors possess high-power density but low energy density. For enhancing energy density of these electrochemical cells and a boost in its electrochemical performance and specific capacity, binder free conducting polymer hydrogel electrodes have gained immense attention, especially polyaniline (PANI) and polypyrrole (PPy). Therefore, in this work, chemically crosslinked PVA/Agar hydrogel electrolytes have been prepared and employed. Agar has been added in PVA since it is environmentally friendly, biodegradable, and cost-effective natural polymer. Subsequently, the binder free polyaniline/polypyrrole electrodes were grown on the PVA/Agar hydrogel electrolytes to fabricate all-in-one flexible hydrogels. The synthesized hydrogels were characterized using X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) analysis, Field emission scanning electron microscope (FESEM) and mechanical studies. Then, the all-in-one flexible supercapacitors were fabricated using the hydrogels. The electrochemical studies such cyclic voltammetry (CV), galvanic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) studies. The fabricated all-in-one lamination free supercapacitors showed promising results and by comparing all four samples, PAP2 where 5 mL of PVA was used in combination with 3 mL of Agar and 5 mL of PANI and PPy each, exhibited the highest areal capacitance of 750.13 mF/cm 2 , energy density of 103.02 μWh/cm 2 , and 497.22 μW/cm 2 power density. The cyclic stability study revealed the 149% capacity retention after 15,000 cycles.
Keyphrases
- solid state
- hyaluronic acid
- reduced graphene oxide
- drug delivery
- gold nanoparticles
- tissue engineering
- molecularly imprinted
- ionic liquid
- solid phase extraction
- wound healing
- drug release
- electron microscopy
- high resolution
- label free
- case control
- induced apoptosis
- carbon nanotubes
- working memory
- magnetic resonance imaging
- electron transfer
- extracellular matrix
- single cell
- simultaneous determination
- signaling pathway
- oxidative stress
- low cost
- cell proliferation
- endoplasmic reticulum stress
- dual energy