Inactivation of genes involved in base excision repair of Corynebacterium glutamicum and survival of the mutants in presence of various mutagens.
Fabiola KautzmannJosef AltenbuchnerPublished in: Archives of microbiology (2017)
Base Excision Repair (BER) is considered as the most active DNA repair pathway in vivo, which is initiated by recognition of the nucleotide lesions and excision of the damaged DNA base. The genome of Corynebacterium glutamicum ATCC 13032 contains various DNA glycosylases encoding genes (ung, fpg/mutM, tagI, alkA, mutY), two AP-endonuclease encoding genes (nei and nth) and an exonuclease encoding gene xth. To investigate the role of these genes during DNA repair in C. glutamicum, mutants with deletions of one or more genes in BER pathway were created. After treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), mitomycin C (MMC), zeocin and UV-light, we characterised the function of the different BER genes by determination of the survival capability. DNA lesions caused by MNNG strongly reduced survival of the tagI, mutY and alkA mutants but had a negligible effect on the ung and mutM mutants. The endonucleases Nth and Nei turned out to be essential for the repair of base modifications caused by MMC while UV-light and zeocin did not seem to address the BER. So far, BER in C. glutamicum appears to be very similar to that in E. coli.