Login / Signup

Demonstration of SiO2/SiC based protective coating for dental ceramic prostheses.

Zhiting ChenChaker FaresRandy ElhassaniFan RenMijin KimShuMin HsuArthur E ClarkJosephine F Esquivel-Upshaw
Published in: Journal of the American Ceramic Society. American Ceramic Society (2019)
SiO2/SiC coatings were deposited onto ceramics disks using plasma enhanced chemical vapor deposition. The effects of deposition pressure and gas-flow ratio on the refractive index, extinction coefficient, and SiC composition were studied. For the highest studied SiH4 to CH4 gas-flow ratio of 1.5, the refractive index increased by 17% from 2.53 (at the wavelength of 845 nm) to 2.96 (at the wavelength of 400 nm). For the lowest studied SiH4 to CH4 gas-flow ratio of 0.5, the refractive index only increased by 4% from 2.11 (at the wavelength of 845 nm) to 2.20 (at the wavelength of 400 nm). At higher deposition pressures, the variation in refractive index of the SiC coatings was significantly lower showing a slight increase from 1.93 (at a wavelength of 845 nm) to 1.96 at a wavelength of 400 nm. Except for the case of a low SiH4 to CH4 gas-flow ratio of 0.5, for light with wavelengths ≤ 650 nm, the extinction coefficient of the SiC coatings increased significantly. Light with a wavelength > 650 nm had an extinction coefficient near 0 in all cases. After annealing the sample at 400°C for 4 hours, hydrogen-related bonds broke and the stress of the film was reduced from -245 to -71 MPa. By utilizing different thicknesses of SiC, the full standard dental shade guide was matched with the ΔE of each coated disk being less than 3.3 compared to the shade guide.
Keyphrases
  • photodynamic therapy
  • room temperature
  • light emitting
  • magnetic resonance imaging
  • diffusion weighted imaging
  • computed tomography
  • carbon dioxide
  • magnetic resonance
  • stress induced