Login / Signup

Advances in Foodborne Pathogen Analysis.

Arun K BhuniaBledar BishaAndrew G GehringByron F Brehm-Stecher
Published in: Foods (Basel, Switzerland) (2020)
As the world population has grown, new demands on the production of foods have been met by increased efficiencies in production, from planting and harvesting to processing, packaging and distribution to retail locations. These efficiencies enable rapid intranational and global dissemination of foods, providing longer "face time" for products on retail shelves and allowing consumers to make healthy dietary choices year-round. However, our food production capabilities have outpaced the capacity of traditional detection methods to ensure our foods are safe. Traditional methods for culture-based detection and characterization of microorganisms are time-, labor- and, in some instances, space- and infrastructure-intensive, and are therefore not compatible with current (or future) production and processing realities. New and versatile detection methods requiring fewer overall resources (time, labor, space, equipment, cost, etc.) are needed to transform the throughput and safety dimensions of the food industry. Access to new, user-friendly, and point-of-care testing technologies may help expand the use and ease of testing, allowing stakeholders to leverage the data obtained to reduce their operating risk and health risks to the public. The papers in this Special Issue on "Advances in Foodborne Pathogen Analysis" address critical issues in rapid pathogen analysis, including preanalytical sample preparation, portable and field-capable test methods, the prevalence of antibiotic resistance in zoonotic pathogens and non-bacterial pathogens, such as viruses and protozoa.
Keyphrases
  • loop mediated isothermal amplification
  • healthcare
  • emergency department
  • risk factors
  • label free
  • machine learning
  • real time pcr
  • gram negative
  • climate change
  • human health
  • drug induced