Graphene-TLL-Cu 2 ONPs Hybrid as Highly Efficient Catalyst for Degradation of Organic Compounds.
Noelia Losada-GarciaJannier CarranzaJose M PalomoPublished in: Nanomaterials (Basel, Switzerland) (2023)
In this work, Cu 2 O nanoparticles (NPs) were created in situ on graphene functionalized with Thermomyces lanuginosus lipase (G@TLL) where site-oriented supported TLL acted as template and binder in the presence of copper salt by tailorable synthesis under mild conditions, producing a heterogeneous catalyst. Cu 2 O NPs were confirmed by XRD and XPS. The TEM microscopy showed that the nanoparticles were homogeneously distributed over the G@TLL surface with sizes of 53 nm and 165 nm. This G@TLL-Cu 2 O hybrid was successfully used in the degradation of toxic organic compounds such as trichloroethylene (TCE) and Rhodamine B (RhB). In the case of TCE, the hybrid presented a high catalytic capacity, degrading 60 ppm of product in 60 min in aqueous solution and room temperature without the formation of other toxic subproducts. In addition, a TOF value of 7.5 times higher than the unsupported counterpart (TLL-Cu 2 O) was obtained, demonstrating the improved catalytic efficiency of the system in the solid phase. The hybrid also presented an excellent catalytic performance for the degradation of Rhodamine B (RhB) obtaining a complete degradation (48 ppm) in 50 min in aqueous solution and room temperature and with the presence of a green oxidant as H 2 O 2 .