Login / Signup

Ultrafast Photocontrolled Rotation in a Molecular Motor Investigated by Machine Learning-Based Nonadiabatic Dynamics Simulations.

Haoyang XuBoyuan ZhangYuanda TaoWeijia XuBo HuFeng YanJin Wen
Published in: The journal of physical chemistry. A (2023)
The thermal helix inversion (THI) of the overcrowded alkene-based molecular motors determines the speed of the unidirectional rotation due to the high reaction barrier in the ground state, in comparison with the ultrafast photoreaction process. Recently, a phosphine-based motor has achieved all-photochemical rotation experimentally, promising to be controlled without a thermal step. However, the mechanism of this photochemical reaction has not yet been fully revealed. The comprehensive computational studies on photoisomerization still resort to nonadiabatic molecular dynamics (NAMD) simulations based on electronic structure calculations, which remains a high computational cost for large systems such as molecular motors. Machine learning (ML) has become an accelerating tool in NAMD simulations recently, where excited-state potential energy surfaces (PESs) are constructed analytically with high accuracy, providing an efficient approach for simulations in photochemistry. Herein the reaction pathway is explored by a spin-flip time-dependent density functional theory (SF-TDDFT) approach in combination with ML-based NAMD simulations. According to our computational simulations, we notice that one of the key factors of fulfilling all-photochemical rotation in the phosphine-based motor is that the excitation energies of four isomers are similar. Additionally, a shortcut photoinduced transformation between unstable isomers replaces the THI step, which shares the conical intersection (CI) with photoisomerization. In this study, we provide a practical approach to speed up the NAMD simulations in photochemical reactions for a large system that could be extended to other complex systems.
Keyphrases