Login / Signup

Investigations on the Timing of Fruit Infection by Fungal Pathogens Causing Fruit Rot of Deciduous Holly.

Shan LinFrancesca Peduto Hand
Published in: Plant disease (2018)
Fruit rot of deciduous holly is an emerging fungal disease that is affecting plant production across midwestern and eastern U.S. nurseries. To determine the growth stage(s) of host susceptibility to infection by the major pathogens associated with the disease, Alternaria alternata and Diaporthe ilicicola, and minor pathogens such as Colletotrichum fioriniae and Epicoccum nigrum, we conducted two sets of experiments over two consecutive seasons. In the first case we monitored the presence of the pathogens as well as disease progression in a commercial nursery under natural conditions by collecting plant tissues from the flower bud stage until fruit maturity. The target pathogens were consistently isolated from asymptomatic samples at all stages of fruit development and from symptomatic samples at fruit maturity across the 2 years of collection. A significant increase in fungal isolation frequency, primarily species of Alternaria and Colletotrichum, was observed right after flowering, but fruit rot symptoms only developed on mature fruit. In the second case we artificially inoculated containerized plants maintained outdoor at our research farm with individual or combined pathogens at different fruit developmental stages, and we assessed disease incidence on mature fruit to determine the time of host susceptibility to infection and, indirectly, whether pathogens in the fungal complex carry out latent infections. D. ilicicola could cause latent infection on deciduous holly fruit when inoculated at the full bloom and petal fall stages, and all inoculations made on wounded mature fruit resulted in fruit rot. These findings suggest that flowering represents a critical period to manage D. ilicicola infections and that mature fruit should be protected from any injury to avoid disease. In both experiments a negative correlation between disease incidence and temperature was found; however, the decrease in temperature also coincided with fruit ripening. The effects of temperature and changes in physiological properties of the fruit during maturation on disease development should be further investigated to fully interpret these findings.
Keyphrases
  • gram negative
  • antimicrobial resistance
  • risk factors
  • south africa
  • multidrug resistant
  • high speed
  • sleep quality