Login / Signup

Mechanism of elastic energy storage of honey bee abdominal muscles under stress relaxation.

Zhizhong DengYuling ZhangShao-Ze Yan
Published in: Journal of insect science (Online) (2023)
Energy storage of passive muscles plays an important part in frequent activities of honey bee abdomens due to the muscle distribution and open circulatory system. However, the elastic energy and mechanical properties of structure in passive muscles remain unclear. In this article, stress relaxation tests on passive muscles from the terga of the honey bee abdomens were performed under different concentrations of blebbistatin and motion parameters. In stress relaxation, the load drop with the rapid and slow stages depending on stretching velocity and stretching length reflects the features of myosin-titin series structure and cross-bridge-actin cyclic connections in muscles. Then a model with 2 parallel modules based on the 2 feature structures in muscles was thus developed. The model described the stress relaxation and stretching of passive muscles from honey bee abdomen well for a good fitting in stress relaxation and verification in loading process. In addition, the stiffness change of cross-bridge under different concentrations of blebbistatin is obtained from the model. We derived the elastic deformation of cross-bridge and the partial derivatives of energy expressions on motion parameters from this model, which accorded the experimental results. This model reveals the mechanism of passive muscles from honey bee abdomens suggesting that the temporary energy storage of cross-bridge in terga muscles under abdomen bending provides potential energy for springback during the periodic abdomen bending of honey bee or other arthropod insects. The finding also provides an experimental and theoretical basis for the novel microstructure and material design of bionic muscle.
Keyphrases
  • single molecule
  • stress induced
  • minimally invasive
  • mass spectrometry
  • extracorporeal membrane oxygenation
  • multiple sclerosis
  • quantum dots