Login / Signup

Simple Low Temperature Technique to Synthesize Sillenite Bismuth Ferrite with Promising Photocatalytic Performance.

Fahmida SharminM A Basith
Published in: ACS omega (2022)
Sillenite-type members of the bismuth ferrite family have demonstrated outstanding potential as novel photocatalysts in environmental remediation such as organic pollutant degradation. This investigation has developed a low temperature one-step hydrothermal technique to fabricate sillenite bismuth ferrite Bi 25 FeO 40 (S-BFO) via co-substitution of 10% Gd and 10% Cr in Bi and Fe sites of BiFeO 3 , respectively, by tuning hydrothermal reaction temperatures. Rietveld refined X-ray diffraction patterns of the as-synthesized powder materials revealed the formation of S-BFO at a reaction temperature of 120-160 °C. A further increase in the reaction temperature destroyed the desired sillenite structure. With the increase in the reaction temperature from 120 to 160 °C, the morphology of S-BFO gradually changed from irregular shape to spherical powder nanomaterials. The high-resolution TEM imaging demonstrated the polycrystalline nature of the S-BFO(160) nanopowders synthesized at 160 °C. The as-synthesized samples exhibited considerably high absorbance in the visible region of the solar spectrum, with the lowest band gap of 1.76 eV for the sample S-BFO(160). Interestingly, S-BFO(160) exhibited the highest photocatalytic performance under solar irradiation, toward the degradation of rhodamine B and methylene blue dyes owing to homogeneous phase distribution, regular powder-like morphology, lowest band gap, and quenching of electron-hole pair recombination. The photodegradation of a colorless organic pollutant (ciprofloxacin) was also examined to ensure that the degradation is photocatalytic and not dye-sensitized. In summary, Gd and Cr co-doping have proven to be a compelling energy-saving and low-cost approach for the formulation of sillenite-phase bismuth ferrite with promising photocatalytic activity.
Keyphrases