Photochromic and Room Temperature Phosphorescent Donor-Acceptor Hybrid Crystals Regulated by Core-Substituted Naphthalenediimides.
Yi-Ming DiMeng-Hua LiMing-Hua YouShu-Quan ZhangMei-Jin LinPublished in: Inorganic chemistry (2021)
Donor-acceptor (D-A) hybrid crystals are an emerging kind of crystalline hybrid material composed of semiconductive inorganic donors and organic acceptors. Except for the intrinsic photochromism, recently we have reported that the anion-π polyoxometalate (POM)/naphthalenediimide (NDI) hybrid crystals could produce an interesting room temperature phosphorescence (RTP) quantum yield up to 7.2%. Herein, we extended into core-substituted NDIs and anticipated the regulation of their photochromic and RTP properties. Thus, two hybrid crystals, namely (H4BDMPy-Br2NDI)·(NMP)4·(HPW12O40) (1) and (H4BDMPy-I2NDI)·(HPW12O40) (2) (H2BDMPy-Br2NDI: N,N'-bis(3,5-dimethylpyrazolyl)-2,6-dibromo-1,4,5,8-naphthalenediimide and H2BDMPy-I2NDI: N,N'-bis(3,5-dimethylpyrazolyl)-2,6-diiodide-1,4,5,8-naphthalenediimide), have been synthesized from phosphotungstic anions (PW12O403-) and Br or I core-substituted NDIs. Compared to the core-unsubstituted analogues (H4BDMPy-NDI)·(NMP)4·(HPW12O40) (3), 2 with photosensitive iodine substituents is more sensitive to light, which can become discolored under natural light. As a result of the heavy-atom effect, hybrid 1 exhibits remarkable RTP with the quantum yield up to 10.2% and a lifetime of 1.14 ms.