Mesoscopic Model for Disjoining Pressure Effects in Nanoscale Thin Liquid Films and Evaporating Extended Meniscuses.
Zhiheng HuShuai GongPublished in: Langmuir : the ACS journal of surfaces and colloids (2023)
Disjoining pressure effect is the key to describe contact line dynamics, micro/nanoscale liquid-vapor phase change heat transfer, and liquid transport in nanopores. In this paper, by combining a mesoscopic approach for nanoscale liquid-vapor interfacial transport and a mean-field approximation of the long-range solid-fluid molecular interaction, a mesoscopic model for the disjoining pressure effect in nanoscale thin liquid films is proposed. The capability of this model to delineate the disjoining pressure effect is validated. We demonstrate that the Hamaker constant determined from our model agrees very well with molecular dynamics (MD) simulation and that the transient evaporation/condensation mass flux predicted by this mesoscopic model is also consistent with the kinetic theory. Using this model, we investigate the characteristics of the evaporating extended meniscus in a nanochannel. The nonevaporating film region, the evaporating thin-film region, and the intrinsic meniscus region are successfully captured by our model. Our results suggest that the apparent contact angle and thickness of the nonevaporating liquid film are self-tuned according to the evaporation rate, and a higher evaporation rate results a in larger apparent contact angle and thinner nonevaporating liquid film. We also show that disjoining pressure plays a dominant role in the nonevaporating film region and suppresses the evaporation in this region, while capillary pressure dominates the intrinsic meniscus region. Strong evaporation takes place in the thin-film region, and both the disjoining pressure and capillary pressure contribute to the total pressure difference that delivers the liquid from the intrinsic meniscus region to the evaporating thin-film region, compensating for the liquid mass loss due to strong evaporation. Our work provides a new avenue for investigating thin liquid film spreading, liquid transport in nanopores, and microscopic liquid-vapor phase change heat/mass transfer mechanisms near the three-phase contact line region.
Keyphrases