Login / Signup

Energy-Efficient Anomaly Detection and Chaoticity in Electric Vehicle Driving Behavior.

Efe SavranEsin KarpatFatih Karpat
Published in: Sensors (Basel, Switzerland) (2024)
Detection of abnormal situations in mobile systems not only provides predictions about risky situations but also has the potential to increase energy efficiency. In this study, two real-world drives of a battery electric vehicle and unsupervised hybrid anomaly detection approaches were developed. The anomaly detection performances of hybrid models created with the combination of Long Short-Term Memory (LSTM)-Autoencoder, the Local Outlier Factor (LOF), and the Mahalanobis distance were evaluated with the silhouette score, Davies-Bouldin index, and Calinski-Harabasz index, and the potential energy recovery rates were also determined. Two driving datasets were evaluated in terms of chaotic aspects using the Lyapunov exponent, Kolmogorov-Sinai entropy, and fractal dimension metrics. The developed hybrid models are superior to the sub-methods in anomaly detection. Hybrid Model-2 had 2.92% more successful results in anomaly detection compared to Hybrid Model-1. In terms of potential energy saving, Hybrid Model-1 provided 31.26% superiority, while Hybrid Model-2 provided 31.48%. It was also observed that there is a close relationship between anomaly and chaoticity. In the literature where cyber security and visual sources dominate in anomaly detection, a strategy was developed that provides energy efficiency-based anomaly detection and chaotic analysis from data obtained without additional sensor data.
Keyphrases
  • loop mediated isothermal amplification
  • real time pcr
  • label free
  • machine learning
  • public health
  • risk assessment
  • working memory
  • big data
  • climate change