Login / Signup

High Interfacial Viscoelasticity of Aqueous Mixed Dodecyltrimethylammonium Bromide-Sodium Dodecyl Sulfate Surfactants Forming Inclusion Complexes with α-Cyclodextrin.

Alberto S LuvianoMiguel Costas
Published in: Langmuir : the ACS journal of surfaces and colloids (2023)
Mixtures of anionic-cationic surfactants have shown high synergistic effects in the bulk solution and at the liquid/air interface. These studies have been limited to a reduced concentration range, where there is no formation of aggregates or precipitates. The addition of host molecules, such as cyclodextrins, to these systems reduces the effects of precipitation by forming inclusion complexes and also modifies the values of other surfactant properties, like the Krafft temperature and the critical aggregation concentration (CAC). We studied the interfacial synergistic effects promoted by electrostatic interactions, using the Rosen model to calculate an interaction parameter for mixtures of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) in the presence of α-cyclodextrin (αCD), in aqueous solutions. We measured the CAC of SDS-DTAB-αCD mixtures using a pendant drop tensiometer, with the αCD concentration fixed at 10 mM and at 283.15 K. We performed rheological measurements on the mixtures where the surfactant total concentration is fixed below the measured CAC, varying the αCD concentration and temperature. We found that the dilatational modulus shows a clear correlation with the interaction parameter. It appears that the attractive interactions within the film are those due to the inclusion complexes formed by two αCD and one surfactant molecule, which according to the previous studies, is the dominant species in both the bulk and liquid/air interface. The synergistic effect observed here for SDS-DTAB surfactant mixtures with αCD can be applied to systems and processes (drop emission, drug delivery methods, stabilization of viral capsids and bacterial membranes, and emulsification) where interfacial processes require specific viscoelastic properties.
Keyphrases
  • ionic liquid
  • drug delivery
  • nk cells
  • molecular dynamics simulations
  • sars cov
  • cancer therapy
  • mass spectrometry
  • capillary electrophoresis
  • atomic force microscopy