Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.
Gian Marco ConteAlexander D WestonDavid C VogelsangKenneth A PhilbrickJason C CaiMaurizio BarberaFrancesco SanvitoDaniel H LachanceRobert B JenkinsWilliam Oliver TobinJeanette E Eckel-PassowBradley J EricksonPublished in: Radiology (2021)
Background Missing MRI sequences represent an obstacle in the development and use of deep learning (DL) models that require multiple inputs. Purpose To determine if synthesizing brain MRI scans using generative adversarial networks (GANs) allows for the use of a DL model for brain lesion segmentation that requires T1-weighted images, postcontrast T1-weighted images, fluid-attenuated inversion recovery (FLAIR) images, and T2-weighted images. Materials and Methods In this retrospective study, brain MRI scans obtained between 2011 and 2019 were collected, and scenarios were simulated in which the T1-weighted images and FLAIR images were missing. Two GANs were trained, validated, and tested using 210 glioblastomas (GBMs) (Multimodal Brain Tumor Image Segmentation Benchmark [BRATS] 2017) to generate T1-weighted images from postcontrast T1-weighted images and FLAIR images from T2-weighted images. The quality of the generated images was evaluated with mean squared error (MSE) and the structural similarity index (SSI). The segmentations obtained with the generated scans were compared with those obtained with the original MRI scans using the dice similarity coefficient (DSC). The GANs were validated on sets of GBMs and central nervous system lymphomas from the authors' institution to assess their generalizability. Statistical analysis was performed using the Mann-Whitney, Friedman, and Dunn tests. Results Two hundred ten GBMs from the BRATS data set and 46 GBMs (mean patient age, 58 years ± 11 [standard deviation]; 27 men [59%] and 19 women [41%]) and 21 central nervous system lymphomas (mean patient age, 67 years ± 13; 12 men [57%] and nine women [43%]) from the authors' institution were evaluated. The median MSE for the generated T1-weighted images ranged from 0.005 to 0.013, and the median MSE for the generated FLAIR images ranged from 0.004 to 0.103. The median SSI ranged from 0.82 to 0.92 for the generated T1-weighted images and from 0.76 to 0.92 for the generated FLAIR images. The median DSCs for the segmentation of the whole lesion, the FLAIR hyperintensities, and the contrast-enhanced areas using the generated scans were 0.82, 0.71, and 0.92, respectively, when replacing both T1-weighted and FLAIR images; 0.84, 0.74, and 0.97 when replacing only the FLAIR images; and 0.97, 0.95, and 0.92 when replacing only the T1-weighted images. Conclusion Brain MRI scans generated using generative adversarial networks can be used as deep learning model inputs in case MRI sequences are missing. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Zhong in this issue. An earlier incorrect version of this article appeared online. This article was corrected on April 12, 2021.
Keyphrases
- deep learning
- contrast enhanced
- convolutional neural network
- diffusion weighted
- magnetic resonance imaging
- computed tomography
- magnetic resonance
- artificial intelligence
- diffusion weighted imaging
- optical coherence tomography
- machine learning
- network analysis
- big data
- social media
- healthcare
- case report
- type diabetes
- white matter
- electronic health record
- resistance training
- climate change
- brain injury
- subarachnoid hemorrhage
- pain management