Login / Signup

Antidiabetic Drug Sitagliptin with Divalent Transition Metals Manganese and Cobalt: Synthesis, Structure, Characterization Antibacterial and Antioxidative Effects in Liver Tissues.

Samy M El-MegharbelNajah M Al-BaqamiEman H Al-ThubaitiSafa H QahlBander AlbogamiReham Z Hamza
Published in: Current issues in molecular biology (2022)
Metals and their complexes have an increasing number of medical applications. Sitagliptin (STG) acts as an antidiabetic drug. Mn(II) and Co(II) complexes were studied and characterized based on physical characterization, FT-IR, DG/TG, XRD, ESM, and TEM. Data revealed that STG acts as a bidentate ligand through the oxygen atom of a carbonyl group and the nitrogen atom of an amino group. Magnetic measurement data revealed that the Mn/STG metal complex has a square planner geometry. The experiment was performed on 40 male albino rats who were divided into four groups: the control group, STG group, group treated with STG/Mn, and group treated with Co/STG. Biomarkers for hepatic enzymes and antioxidants were found in the blood, and hepatic tissue histology was evaluated. STG in combination with Mn and Co administration showed potent protective effects against hepatic biochemical alterations induced by STG alone, as well as suppressing oxidative stress and structural alterations. These complexes prevented any stress and improved hepatic enzymatic levels more than STG alone. The STG/Mn complex was highly effective against Bacillus subtilis and Streptococcus pneumonia , while STG/Co was highly effective against Escherichia coli , Pseudomonas aeruginosa, and Staphylococcus aureas . Therefore, STG combined with Mn and Co produced a synergistic effect against oxidative stress and improved the histological structure of the liver tissues. STG metal complexes with Mn and Co showed the most potential ameliorative antioxidant and hepatoprotective effects.
Keyphrases