Login / Signup

Anomalous packing and dynamics of a polymer chain confined in a static porous environment.

Zachary E DellMurugappan Muthukumar
Published in: The Journal of chemical physics (2018)
Polymers in confined porous environments are ubiquitous throughout biology, physics, materials science, and engineering. Several experiments have suggested that in some porous environments, chain dynamics can become extremely slow. While phenomenological explanations exist, the exact mechanisms for these slow dynamics have not been fully characterized. In this work, we initiate a joint simulation-theory study to investigate chain packing and dynamics in a static porous environment. The main theoretical concept is the free energy of the chain partitioning into several chambers of the porous environment. Both the theoretical results and Langevin dynamics simulations show that chain packing in each of the chambers is predominantly independent of chain length; it is determined by the maximal packing of segments in each chamber. Dynamically, short chains (compared to the chamber size) become trapped in a single chamber and dynamics become extremely slow, characteristic of an Ogston sieving-like behavior. For longer chains, on the other hand, a hierarchy of slow dynamics is observed due to entropic trapping, characterized by sub-diffusive behavior and a temporary plateau in the mean square displacement. Due to the slow nature of the dynamics, the inevitable long-time diffusive behavior of the chains is not captured by our simulations. Theoretically, the slow dynamics are understood in terms of a free energy barrier required to thread the chain from one chamber to the next. There is overall qualitative and quantitative agreement between simulations and theory. This work provides foundations for a better understanding of how chain dynamics are affected by porous environments.
Keyphrases
  • public health
  • molecular dynamics
  • highly efficient
  • blood pressure
  • metal organic framework
  • mass spectrometry