Maintenance of bone mass despite estrogen depletion in female common marmoset monkeys (Callithrix jacchus).
Wendy SaltzmanDavid H AbbottNeil BinkleyRicki J ColmanPublished in: American journal of primatology (2018)
Estrogen depletion leads to bone loss in almost all mammals with frequent regular ovarian cycles. However, subordinate adult female common marmosets (Callithrix jacchus) undergo socially induced anovulation and hypoestrogenism without clinically apparent adverse skeletal consequences. Thus, we speculated that this non human primate might have evolved a mechanism to avoid estrogen-depletion bone loss. To test this possibility, we performed three experiments in which lumbar-spine (L5-L6) bone mineral content (BMC) and density (BMD) were assessed using dual-energy X-ray absorptiometry: (i) cross-sectionally in 13 long-term ovariectomized animals and 12 age- and weight-matched controls undergoing ovulatory cycles; (ii) longitudinally in 12 animals prior to, 3-4 and 6-7 months following ovariectomy (ovx), and six controls; and (iii) cross-sectionally in nine anovulatory subordinate and nine dominant females. In Experiments 1 and 3, plasma estradiol and estrone concentrations were measured and uterine dimensions were obtained by ultrasound in a subset of animals as a marker of functional estrogen depletion. Estrogen levels, uterine trans-fundus width, and uterine dorso-ventral diameter were lower in ovariectomized and subordinate females than in those undergoing ovulatory cycles. However, no differences were found in L5-L6 BMC or BMD. These results indicate that estrogen depletion, whether surgically or socially induced, is not associated with lower bone mass in female common marmosets. Thus, this species may possess unique adaptations to avoid bone loss associated with estrogen depletion.
Keyphrases
- bone loss
- estrogen receptor
- dual energy
- computed tomography
- endothelial cells
- magnetic resonance imaging
- bone mineral density
- diabetic rats
- spinal cord
- physical activity
- magnetic resonance
- image quality
- spinal cord injury
- high intensity
- oxidative stress
- ultrasound guided
- weight gain
- young adults
- diffusion weighted imaging
- contrast enhanced ultrasound