Login / Signup

DFT studies on Ni-catalyzed intermolecular cycloaddition of diynes with methyleneaziridines.

Xiaoling LaiMengwei HuYang Li
Published in: Dalton transactions (Cambridge, England : 2003) (2021)
The mechanisms of nickel-catalyzed intermolecular cycloaddition of diynes with methyleneaziridines to form substituted pyrroles have been investigated with DFT calculations. The DFT results don't support the originally proposed mechanisms, which involve β-C elimination or α-C elimination. Detailed calculations revealed that the preferred catalytic cycle is a combination of the cod dissociative mechanism and the cod associative mechanism, which is comprised of four stages: oxidative addition, ligand substitution of the diyne by cod, alkyne insertion and reductive elimination. Each of the alkyne moieties of the diyne substrate has an important role: one alkyne moiety acts as the reactant and inserts into the Ni-C bond to form the cycle expansion complex; the other free alkyne moiety has an effect as a ligand coordinated to the Ni center to promote the oxidative addition step (rate-determining step). Since there is no free alkyne in the monoalkyne substrate to coordinate to the Ni center, the monoalkyne catalytic cycle is unfavorable because of the high energy barrier for the oxidative addition step.
Keyphrases