SARS-CoV-2-Encoded Proteome and Human Genetics: From Interaction-Based to Ribosomal Biology Impact on Disease and Risk Processes.
Olivia SirpillaJacob BaussRuchir GuptaAdam UnderwoodDinah QutobTom FreelandCaleb BuppJoseph CarcilloNicholas HartogSurender RajasekaranJeremy W ProkopPublished in: Journal of proteome research (2020)
SARS-CoV-2 (COVID-19) has infected millions of people worldwide, with lethality in hundreds of thousands. The rapid publication of information, both regarding the clinical course and the viral biology, has yielded incredible knowledge of the virus. In this review, we address the insights gained for the SARS-CoV-2 proteome, which we have integrated into the Viral Integrated Structural Evolution Dynamic Database, a publicly available resource. Integrating evolutionary, structural, and interaction data with human proteins, we present how the SARS-CoV-2 proteome interacts with human disorders and risk factors ranging from cytokine storm, hyperferritinemic septic, coagulopathic, cardiac, immune, and rare disease-based genetics. The most noteworthy human genetic potential of SARS-CoV-2 is that of the nucleocapsid protein, where it is known to contribute to the inhibition of the biological process known as nonsense-mediated decay. This inhibition has the potential to not only regulate about 10% of all biological transcripts through altered ribosomal biology but also associate with viral-induced genetics, where suppressed human variants are activated to drive dominant, negative outcomes within cells. As we understand more of the dynamic and complex biological pathways that the proteome of SARS-CoV-2 utilizes for entry into cells, for replication, and for release from human cells, we can understand more risk factors for severe/lethal outcomes in patients and novel pharmaceutical interventions that may mitigate future pandemics.
Keyphrases
- sars cov
- respiratory syndrome coronavirus
- endothelial cells
- risk factors
- induced pluripotent stem cells
- induced apoptosis
- type diabetes
- healthcare
- cell proliferation
- gene expression
- oxidative stress
- small molecule
- coronavirus disease
- atrial fibrillation
- emergency department
- heart failure
- electronic health record
- machine learning
- acute kidney injury
- ejection fraction
- genome wide
- weight loss
- cell death
- quantum dots
- patient reported outcomes
- health information