Selection for Test-Day Milk Yield and Thermotolerance in Brazilian Holstein Cattle.
Renata NegriIgnacio AguilarGiovani Luis FeltesJaime Araújo CobuciPublished in: Animals : an open access journal from MDPI (2021)
Intense selection for milk yield has increased environmental sensitivity in animals, and currently, heat stress is an expensive problem in dairy farming. The objectives were to identify the best model for characterizing environmental sensitivity in Holstein cattle, using the test-day milk yield (TDMY) combined with the temperature-humidity index (THI), and identify sires genetically superior for heat-stress (HS) tolerance and milk yield, through random regression. The data comprised 94,549 TDMYs of 11,294 first-parity Holstein cows in Brazil, collected from 1997 to 2013. The yield data were fitted to Legendre orthogonal polynomials, linear splines and the Wilmink function. The THI (the average of two days before the dairy control) was used as an environmental gradient. An animal model that fitted production using a Legendre polynomials of quartic order for the days in milk and quadratic equations for the THI presented a better quality of fit (Akaike's information criterion (AIC) and Bayesian information criterion (BIC)). The Spearman correlation coefficient of greatest impact was 0.54, between the top 1% for TDMY and top 1% for HS. Only 9% of the sires showed plasticity and an aptitude for joint selection. Thus, despite the small population fraction allowed for joint selection, sufficient genetic variability for selecting more resilient sires was found, which promoted concomitant genetic gains in milk yield and thermotolerance.