Morphology of Composite Fe@Au Submicron Particles, Produced with Ultrasonic Spray Pyrolysis and Potential for Synthesis of Fe@Au Core-Shell Particles.
Peter MajeričDarja FeizpourBernd FriedrichŽiga JelenIvan AnželRebeka RudolfPublished in: Materials (Basel, Switzerland) (2019)
Iron core-gold shell (Fe@Au) nanoparticles are prominent for their magnetic and optical properties, which are especially beneficial for biomedical uses. Some experiments were carried out to produce Fe@Au particles with a one-step synthesis method, Ultrasonic Spray Pyrolysis (USP), which is able to produce the particles in a continuous process. The Fe@Au particles were produced with USP from a precursor solution with dissolved Iron (III) chloride and Gold (III) chloride, with Fe/Au concentration ratios ranging from 0.1 to 4. The resulting products are larger Fe oxide particles (mostly maghemite Fe2O3), with mean sizes of about 260-390 nm, decorated with Au nanoparticles (AuNPs) with mean sizes of around 24-67 nm. The Fe oxide core particles are mostly spherical in all of the experiments, while the AuNPs become increasingly irregular and more heavily agglomerated with lower Fe/Au concentration ratios in the precursor solution. The resulting particle morphology from these experiments is caused by surface chemistry and particle to solvent interactions during particle formation inside the USP system.