Login / Signup

Iron limitation of kelp growth may prevent ocean afforestation.

Ellie R PainePhilip W BoydRobert F StrzepekMichael J EllwoodElizabeth A BrewerGuillermo Diaz-PulidoMatthias SchmidCatriona L Hurd
Published in: Communications biology (2023)
Carbon dioxide removal (CDR) and emissions reduction are essential to alleviate climate change. Ocean macroalgal afforestation (OMA) is a CDR method already undergoing field trials where nearshore kelps, on rafts, are purposefully grown offshore at scale. Dissolved iron (dFe) supply often limits oceanic phytoplankton growth, however this potentially rate-limiting factor is being overlooked in OMA discussions. Here, we determine the limiting dFe concentrations for growth and key physiological functions of a representative kelp species, Macrocystis pyrifera, considered as a promising candidate for OMA. dFe additions to oceanic seawater ranging 0.01-20.2 nM Fe' ‒ Fe' being the sum of dissolved inorganic Fe(III) species ‒ result in impaired physiological functions and kelp mortality. Kelp growth cannot be sustained at oceanic dFe concentrations, which are 1000-fold lower than required by M. pyrifera. OMA may require additional perturbation of offshore waters via dFe fertilisation.
Keyphrases
  • climate change
  • carbon dioxide
  • organic matter
  • risk factors
  • mass spectrometry
  • risk assessment
  • iron deficiency
  • photodynamic therapy
  • water quality
  • advance care planning
  • human health