Login / Signup

O-Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure-activity relationship for drug design, a review.

Seyedeh Roya AlizadehMohammad Ali Ebrahimzadeh
Published in: Phytotherapy research : PTR (2021)
Quercetin as a valuable natural flavonoid has shown extensive biological activities, including anticancer, antioxidant, antibacterial, antiinflammatory, anti-Alzheimer, antifungal, antiviral, antithalassemia, iron chelation, antiobesity, antidiabetic, antihypertension, and antiphospholipase A2 (PLA2) activities, by the modulation of various targets and signaling pathways that have attracted much attention. However, the low solubility and poor bioavailability of quercetin have limited its applications; therefore, the researchers have tried to design and synthesize many new derivatives of quercetin through different strategies to modify quercetin restrictions and improve its biological activities. This review categorized the O-glycoside derivatives of Quercetin into two main classes, 3-O-glycoside and other O-glycoside derivatives. Also, it studied biological activities, structure-activity relationship (SAR), and the action mechanism of O-glycoside quercetin derivatives. Overall, we summarized past and present research for discovering new potent lead compounds. HIGHLIGHTS: Quercetin is a natural flavonoid with a valuable scaffold. O-Glycoside quercetin derivatives represents broad-spectrum biological activities. The structure-activity relationship investigation is discussed after modifying the scaffold of quercetin. This review can help researchers to rationally design/develop various drugs.
Keyphrases
  • structure activity relationship
  • oxidative stress
  • signaling pathway
  • anti inflammatory
  • epithelial mesenchymal transition
  • candida albicans
  • cognitive decline
  • pi k akt